ABSTRACT
Extensive use of CSCW applications can influence group decision-making practices. Unlike previous research focused on the influence of synchronous ICTs, our study examines how group decisions are made in asynchronous communication channels. Our inductive qualitative analysis of 360 decision episodes of six FLOSS projects revealed diversity in decision-making practices, which appears to be related to differences in project effectiveness and task type. We also find that standardization of procedures through CSCW tools transforms the nature of some software development work from non-routine to standard procedure.

Author Keywords
CSCW, Decision Making, FLOSS, Open Source Software Development

ACM Classification Keywords

INTRODUCTION
An important stream of Computer Supported Collaborative Work (CSCW) research examines ways to support group decision-making [6]. Much of this research has focused on the influence of synchronous information and communication technology (ICT) on decision outcomes. Little prior research has studied the use of asynchronous ICTs to support group decision-making processes [1].

We examine the effects of technology on decision-making in Free/Libre Open Source Software (FLOSS) teams that work primarily through asynchronous ICTs. FLOSS is a broad term encompassing software developed and released under licenses allowing access to and use of the source code. FLOSS developers contribute from around the world, rarely meet face-to-face, and coordinate activity asynchronously [7].

Software development is usually considered a non-routine task: it is unstructured, uncertain, and requires nontrivial communication and coordination among developers [3]. Understanding decision processes in these naturally occurring distributed teams may provide insight into the work practices of other types of distributed teams that depend on asynchronous ICTs for task support.

GROUP DECISION-MAKING IN CSCW LITERATURE
Widespread use of computer-supported decision systems has generated research attention to the impact of technology on group decision-making. Synchronous and asynchronous technologies lead to different group decision-making processes from those observed in traditional face-to-face groups [4]. Although email is a commonly used tool in organizations, most prior research focuses on synchronous decision-support systems [1]. Our research contributes a longitudinal study of the asynchronous decision-making interactions that occur in six naturally occurring teams, focusing on participation patterns and processes.

METHODS
We adopted a multiple case study methodology, primarily focused on content analysis of decision-making discussions. Developer email lists and forums were used as the data source since they are the primary communication channels for FLOSS teams. Data were collected for six FLOSS projects established in SourceForge, selected for maximum variation in project success and product complexity. Project success was measured according to Crowston et al.’s FLOSS multivariate effectiveness model, which includes downloads, page views, online activities and retention of developers [2]. Three projects develop Enterprise Resource Planning (ERP) systems (Compiere, WebERP, Apache OFBiz) which exhibit high product complexity, and three develop Instant Messenger (IM) clients (Gaim, aMSN, Fire), which has low product complexity.

The decision episode was adopted as the primary unit of coding and analysis. A decision episode is a sequence of messages that begins with a triggering message presenting an opportunity for choice, followed by discussion and an announcement of a decision. We randomly sampled 20 decision episodes from three comparable time periods in
among developers, and the results of a decision are independently. They needed less time and less software NS issues. Generally speaking, the decisions related to (28%) were more complex. We found significant (72%) focused on daily technical discussions, while the rest The majority of FLOSS project decision opportunities DISCUSSION

Among 360 decision-making episodes, we found 258 software-modification decision episodes and 102 non-software decision episodes. Software modification (SM) episodes focus on daily technical decisions that are the primary work of the team. The second type, non-software (NS) episodes generally do not result in a change in software code, though they may exert an influence on the future of project development.

We found significant differences between SM and NS decision episodes in terms of duration, number of messages, message density (how many messages per day) and number of participants (Table 1). The NS episodes are longer, more active and attract more participants than SM episodes.

<table>
<thead>
<tr>
<th>Item</th>
<th>Episode Type</th>
<th>Mean</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>SM</td>
<td>4.11</td>
<td>F=1.76; df=1; p=.19</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>5.21</td>
<td></td>
</tr>
<tr>
<td>N Messages</td>
<td>SM</td>
<td>5.60</td>
<td>F=14.11; df=1; p<.01</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>8.21</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>SM</td>
<td>2.78</td>
<td>F=7.11; df=1; p<.01</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>3.99</td>
<td></td>
</tr>
<tr>
<td>N Participants</td>
<td>SM</td>
<td>3.05</td>
<td>F=21.99; df=1; p<.01</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>4.15</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Comparison of decision episode types.

In comparing IM and ERP projects, we found that their participation patterns were similar for SM issues but more variance was seen in NS episodes. There were also differences in the overall participation patterns between the projects for both ERP and IM. For example, Compiere required more time but fewer messages to reach a decision than any of the other projects. By contrast, aMSN’s decisions were accomplished with more messages over fewer days than the other IM projects.

DISCUSSION

The majority of FLOSS project decision opportunities (72%) focused on daily technical discussions, while the rest (28%) were more complex. We found significant differences in participation patterns between SM issues and NS issues. Generally speaking, the decisions related to software-modification were made individually, and independently. They needed less time and less coordination among developers, and the results of a decision are presented as lines of source codes checked into CVS. However, decisions related to issues beyond the software seemed to be more complicated, uncertain and beyond an individual’s capabilities. The results of these decisions will not immediately be committed into CVS, and may influence software infrastructure and project future. These issues attracted more attention from the extended community with attempts to reach group consensus.

These findings also reflect on the nature of task. Task routineness refers to the level of task variety and analyzability [5]. Routine tasks have low variety and high analyzability, while non-routine tasks require more interactions. Software development is generally considered to be non-routine, but with the use of modularity and version control technologies, FLOSS teams transformed some traditionally defined non-routine tasks into routine tasks. Daily technical decisions are often made with few interactions, and sometimes none at all.

In addition, project characteristics and audiences may affect decision-making processes. IM and ERP showed similar participation patterns in software modification decisions through standardized working procedures. In participation patterns for non-software decisions, however, significant differences were evident as IM projects were more active and energetic in these discussions than ERP projects. Additional work is needed to examine the sources of diversity in decision-making processes.

ACKNOWLEDGMENTS

This research is supported by a grant from the National Science Foundation, NSF IIS 05-27457.

REFERENCES

